Supervised Isomap with Dissimilarity Measures in Embedding Learning

نویسندگان

  • Bernardete Ribeiro
  • Armando Vieira
  • João Carvalho das Neves
چکیده

In this paper we propose a supervised version of the Isomap algorithm by incorporating class label information into a dissimilarity matrix in a financial analysis setting. On the credible assumption that corporates financial status lie on a low dimensional manifold, nonlinear dimensionality reduction based on manifold learning techniques has strong potential for bankruptcy analysis in financial applications. We apply the method to a real data set of distressed and healthy companies for proper geometric tunning of similarity cases. We show that the accuracy of the proposed approach is comparable to the state-of-the-art Support Vector Machines (SVM) and Relevance Vector Machines (RVM) despite the fewer dimensions used resulting from embedding learning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supervised Nonlinear Dimensionality Reduction Based on Evolution Strategy

Most of the classifiers suffer from the curse of dimensionality during classification of high dimensional image and non-image data. In this paper, we introduce a new supervised nonlinear dimensionality reduction (S-NLDR) algorithm called supervised dimensionality reduction based on evolution strategy (SDRES) for both image and nonimage data. The SDRES method uses the power of evolution strategy...

متن کامل

Composite Kernel Optimization in Semi-Supervised Metric

Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...

متن کامل

Spectral Regression for Dimensionality Reduction by Deng Cai , Xiaofei He , and Jiawei Han May 2007

Spectral methods have recently emerged as a powerful tool for dimensionality reduction and manifold learning. These methods use information contained in the eigenvectors of a data affinity (i.e., item-item similarity) matrix to reveal low dimensional structure in high dimensional data. The most popular manifold learning algorithms include Locally Linear Embedding, Isomap, and Laplacian Eigenmap...

متن کامل

Spectral Regression for Dimensionality Reduction∗

Spectral methods have recently emerged as a powerful tool for dimensionality reduction and manifold learning. These methods use information contained in the eigenvectors of a data affinity (i.e., item-item similarity) matrix to reveal low dimensional structure in high dimensional data. The most popular manifold learning algorithms include Locally Linear Embedding, Isomap, and Laplacian Eigenmap...

متن کامل

Spectral Regression : a Regression Framework for Efficient Regularized Subspace Learning

Spectral methods have recently emerged as a powerful tool for dimensionality reduction and manifold learning. These methods use information contained in the eigenvectors of a data affinity (i.e., item-item similarity) matrix to reveal the low dimensional structure in the high dimensional data. The most popular manifold learning algorithms include Locally Linear Embedding, ISOMAP, and Laplacian ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008